欧美影院,国产视频一区二区,911精品国产一区二区在线,日韩综合,91精品国产高清一区二区三区蜜臀,91精品91久久久中77777

碳化硅肖特基二極管在PFC電路中的應用

        

                                   

                                           


前言


      目前,在實現(xiàn)“綠色能源”的新技術革命中,眾多高頻開關電源已經(jīng)開始實現(xiàn)高功率因數(shù)校正技術(特別是在通信電源中),采用有源功率因數(shù)校正的居多。連續(xù)導電模式Boost變換器是電源系統(tǒng)中應用較廣的功率因數(shù)校正變換器。在硬開關連續(xù)導電模式Boost變換中,升壓二極管的反向恢復會引起較大的反向恢復損耗和過高的di/dt,產(chǎn)生嚴重的電磁干擾。在提高功率因數(shù)的同時,提高開關管及半導體管的熱穩(wěn)定性,降低電磁干擾( EMI)、電壓應力及電流應力尤為重要。目前,眾多軟開關技術、無損吸收電路應用到PFC的電路上,確實達到了很好的效果,但增加的元器件使成本增加了,同時也降低了電源的可靠性。
      本文提到一種新型材料——SiC(碳化硅),用其制作成的肖特基勢壘二極管具有正溫度系數(shù)及反向恢復時間接近零的特點,使得PFC上的MOSFET開通損耗減少,效率得到進一步的提升。通過制作一臺500W AC/DC電源以驗證該論點。



 1. SiC二極管的特點

      近年來,SiC材料應用于電子設備技術有了長足的發(fā)展,SiC材料比通用Si有更突出的優(yōu)點。這主要是因為SiC材料比通用的材料有更高的電場擊穿電壓2. 4×106V/cm、更快的電荷移動速度、更寬的能帶間隙,材料導熱能力是Si的2~3倍。這些優(yōu)點使得基于SiC制成的肖特基勢壘二極管表現(xiàn)出高的溫度特性(允許最高工作溫度達到300℃,是Si材料的2倍) 、高的反向耐壓、低的導通電阻和高的開關頻率。以上特點能使電源系統(tǒng)中的串聯(lián)開關器件體積最小化,開關頻率的提高也使系統(tǒng)的體積進一步縮小。



 2. SiC二極管穩(wěn)態(tài)和暫態(tài)特性對PFC的影響

      連續(xù)模式Boost變換器的基本拓撲結構如圖1所示。它被廣泛應用于功率因數(shù)校正電路,電感電流為連續(xù)模式。在該電路中,二極管穩(wěn)態(tài)和暫態(tài)特性對PFC電路影響很大,在這里重點討論。

image.png


圖1 Boost變換器



(1)穩(wěn)態(tài)特性——前向電壓Uf

       如圖2(a)所示Si材料超快恢復二極管(DSEP1506A:15A,600V)在室溫條件下測試前向電壓降。在2~5A時,正向壓降基本不變,接近飽和,從另一個側面說明Si材料二極管在高溫時候,正向壓降變小,二極管具有負溫度特性。

      如圖2(b)所示碳化硅肖特基二極管(CSD04060:4A/600V) 在室溫條件下測試前向電壓降。在0~4A負載電流變化時,正向壓降基本是線

性增加,從另一個側面說明碳化硅肖特基二極管在高溫時候,正向壓降線性增加,說明SiC二極管具有正溫度特性。

image.png


圖2 負載電流與正向壓降



       在大功率PFC電路中,二極管可能需要并聯(lián)使用以擴大容量,器件的電流均勻分配問題需要考慮,二極管的前向電壓和導通電阻的特性是關鍵。碳化硅肖特基二極管所特有的正溫度系數(shù)的特性能保證器件并聯(lián)時的均流要求。假設由于某些原因,兩個SiC二極管出現(xiàn)電流不均勻的狀態(tài),其中一個二極管分配的電流較大,則它的導通電阻、正向壓降就相應的增大,阻礙電流的進一步增大,從而促進電流的再一次分配最后達到電流平衡狀態(tài)。由于Si材料的二極管具有負溫度特性,使得在器件均流的問題上進一步的惡化,不利于工作的穩(wěn)定性。因此,碳化硅肖特基二極管適用直接器件并聯(lián)。




(2)暫態(tài)特性——反向恢復電流

       二極管的種類很多,但只有肖特基勢壘二極管運載電流的任務是由多數(shù)載流子完成的,沒有多余的少數(shù)載流子復合,恢復時間非常小,大概在幾十或幾百ps,缺點是其耐壓非常低。其它的Si二極管(如普通二極管、快速二極管、超快恢復二極管)等運載電流的任務是由少數(shù)載流子完成,存在著反向恢復時間的問題。所用的兩款超快恢復二極管,其Trr的時間分別為30ns和13ns,但也不能避免這個反向電流的問題。
       碳化硅肖特基二極管由于材料的特性,它同時具有了兩者的優(yōu)點,不但耐壓非常高,而且反向恢復特性和溫度特性都非常好。而Si材料整流管的反向電流及反向恢復時間會隨溫度的升高而增大。碳化硅肖特基二極管的反向恢復時間及反向電流都非常小,并且有非常好的溫度特性,其反向恢復時間不會隨著溫度升高而變化。

       如圖3所示,在室溫25℃時,超快恢復二極管反向恢復時間是碳化硅肖特基二極管反向時間的3倍,反向電流是碳化硅肖特基二極管的4倍。在高溫150℃時,超快恢復二極管反向恢復時間是碳化硅肖特基二極管反向時間的6倍,反向電流是碳化硅肖特基二極管的12 倍。

image.png

    圖3 SiC二極管與超快恢復二極管反向恢復特性在不同溫度下的比較


  


       一般來說,我們都希望在單相PFC電路中的二極管D1的反向恢復時間越短越好。反向恢復電流會給我們帶來很多問題,如二極管反向恢復損耗,及由此引發(fā)的嚴重MOSFET開通損耗等。不少軟開關或無損吸收技術應用到PFC電路中,如圖4是一個典型的無損吸收的應用,目的也是為了克服二極管的反向恢復時間所帶來的問題。它可實現(xiàn)主開關管接近零電流開通、零電壓關斷,同時升壓二極管為零電流關斷,提高了PFC的效率。但這種電路中,二極管的諧振電壓會比較高,甚至達到二極管的額定電壓,同時所用的元器件比較多,增加了成本, 也降低了系統(tǒng)的可靠性。

image.png


圖4 PFC無損吸收電路

 

      為了驗證碳化硅肖特基二極管能給PFC電路帶來新的改良,制作了500W的AC/DC電源,并與超快恢復二極管(DSEP15-06A)做比較。圖4所示電路參數(shù)如下: 輸出為535W(53.5V/10A);輸入90VAC;Q1: IRF460A(500V/22A) ;D1: CSD04060或DSEP15-06A;L1:400μH;C0:440μF/450V;頻率f:70 kHz。

      在室溫25℃,滿載情況下,分別用超快恢復二極管和碳化硅肖特基二極管作為D1進行比較。超快恢復二極管在室溫25℃時的反向恢復特性如圖5所示,前向電流IF為7.5A,反向電流最大為6.5A,反向恢復時間為40ns,二極管的反向恢復電壓最高達到460V,并且經(jīng)過5個震蕩后才穩(wěn)定。碳化硅肖特基二極管時的反向恢復特性如圖6所示,前向電流相同,反向電流最大為0.7A(比超快恢復二極管減少89%) ,反向恢復時間在12ns(減少70%) ,二極管反向恢復電壓為380V (減少18 %) ,而且沒有了后面的震蕩,關斷損耗也相應減小。

image.png


圖5 超快恢復二極管關斷電流,電壓波形


image.png


圖6 SiC二極管關斷電流,電壓波形



      二極管關斷時存在反向恢復時間問題,造成的MOSFET在該區(qū)間開通時的開通電流加大。二極管的反向勢壘電容越大,MOSFET的開通峰值電流也越大。
     用超快恢復二極管時MOSFET開通電
流和電壓波形如圖7(b)所示,MOSFET開通電流的峰值高至11.4 A。用碳化硅肖特基二極管時MOSFET的開通的電流、電壓和開通損耗波形如圖7(a)所示,MOSFET開通電流的峰值只有6.5A。后者的開通損耗(面積)比前者開通損耗(面積)減少近2/3。

image.png


image.png

 

 圖7 滿載,MOSFET開通波形



       通過上述分析,SiC的前向電壓在額定電流值時是2.00 V, 高于超快恢復二極管的前向電壓(1.30 V)。因此,SiC的導通損耗是比超快恢復二極管的導通損耗高,但導通損耗在整個電源損耗中只占小部分,關鍵還是要減少半導體器件的開關損耗。用碳化硅肖特基二極管導致MOSFET的開通損耗減少的效果尤為明顯。
     在90V交流輸入測試時,整機效率從85%上升到86%,有接近6W的損耗減少了; 220V交流輸入時,整機效率在90%以上。從而散熱片可以適當?shù)臏p少,頻率可以適當?shù)奶岣?,從而?jié)約成本。






























本文來源:電力電子技術與應用微信公眾號







0
?

備案號:粵ICP備2023038869號

首頁
電話
郵件
聯(lián)系
阳城县| 行唐县| 镇赉县| 达拉特旗| 怀宁县| 通州市| 镇江市| 山东省| 牙克石市| 西和县| 长宁县| 唐河县| 冀州市| 谢通门县| 湟源县| 乐东| 四会市| 牡丹江市| 察雅县| 虞城县| 彰化县| 长葛市| 海晏县| 宁阳县| 靖边县| 民县| 陕西省| 大新县| 棋牌| 化州市| 久治县| 太仆寺旗| 应城市| 阆中市| 体育| 太仓市| 万宁市| 民乐县| 准格尔旗| 新乡县| 凤凰县|